Probing water interactions and vacancy production on gadolinia-doped ceria surfaces using electron stimulated desorption.
نویسندگان
چکیده
Polycrystalline gadolinia-doped ceria (GDC) surfaces were studied using low-energy (5-400 eV) electron stimulated desorption (ESD). H(+), O(+), and H(3)O(+) were the primary cationic desorption products with H(+) as the dominant channel. H(+), H(3)O(+), and O(+) have a 22 eV threshold followed by a yield change around 40 eV. H(+) also has an additional yield change approximately 75 eV and O(+) has an additional change approximately 150 eV. The O(+) ESD yield change approximately 150 eV may indicate bond breaking of Gd-O and the involvement of oxygen vacancies. The H(+) and H(3)O(+) threshold data collectively indicate the presence of hydroxyl groups and chemisorbed water molecules on the GDC surfaces. ESD temperature dependence measurements show that the interaction of water with GDC surface defect sites, mainly oxygen vacancies, influences the desorption of H(+), O(+), and H(3)O(+). The temperature dependence of the O(+) ESD at 400 eV incident electron energy yields a 0.21 eV activation energy. This is close to the energy needed for oxygen vacancy production next to a pair of Ce(3+) on a CeO(2) surface. These results may indicate a correlation between the O(+) ESD yield and oxygen vacancy density on GDC surfaces and a potential correlation of O(+) ESD and GDC ionic conductivity.
منابع مشابه
Highly efficient electron stimulated desorption of O+ from gadolinia-doped ceria surfaces.
Highly efficient electron stimulated desorption of O+ from gadolinia-doped ceria (GDC) surfaces annealed at 850 K in ultrahigh vacuum is observed and investigated. O+ desorption has a major threshold of approximately 40 eV and an intrinsic kinetic energy of approximately 5.6 eV. Since the threshold energy is close to Ce 5s and Gd 5s core levels, Auger decay of core holes is likely associated wi...
متن کاملSpecial quasirandom structures for gadolinia-doped ceria and related materials.
Gadolinia doped ceria in its doped or strained form is considered to be an electrolyte for solid oxide fuel cell applications. The simulation of the defect processes in these materials is complicated by the random distribution of the constituent atoms. We propose the use of the special quasirandom structure (SQS) approach as a computationally efficient way to describe the random nature of the l...
متن کاملThermodynamic Stability of Gadolinia-Doped Ceria Thin Film Electrolytes for Micro-Solid Oxide Fuel Cells
Next-generation micro-solid oxide fuel cells for portable devices require nanocrystalline thin-film electrolytes in order to allow fuel cell fabrication on chips at a low operation temperature and with high power outputs. In this study, nanocrystalline gadolinia-doped ceria (Ce0.8Gd0.2O1.9!x) thin-film electrolytes are fabricated and their electrical conductivity and thermodynamic stability are...
متن کاملModel Development for Gadolinia- Doped Ceria-based Anodes in Solid Oxide Fuel Cells
Title of Document: MODEL DEVELOPMENT FOR GADOLINIADOPED CERIA-BASED ANODES IN SOLID OXIDE FUEL CELLS Lei Wang, Doctor of Philosophy, 2014 Directed By: Professor Gregory S. Jackson, Department of Mechanical Engineering Intermediate temperature (500 700 °C) solid oxide fuel cells (IT-SOFCs) with gadolinia-doped ceria (GDC) electrolytes have significant commercial potential due to reduced material...
متن کاملThe Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres
An array of analytical methods including surface area determination by gas adsorption using the Brunauer, Emmett, Teller (BET) method, combustion analysis, XRD, ToF-SIMS, TEM and impedance spectroscopy has been used to investigate the interaction of gadolinia doped ceria (GDC) with hydrogen sulphide containing reducing atmospheres. It is shown that sulphur is incorporated into the GDC bulk and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 22 شماره
صفحات -
تاریخ انتشار 2005